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1. Introduction

Let G be a split reductive group, defined over Fq. Let T be a maximal torus, P be a
parabolic subgroup cotnaining T , and M a Levi factor, which we view as both a subgroup
of G and a quotient of P . We have an “opposite” parabolic P op such that P ∩ P op = M .
We let U = Ru(P ) be the unipotent radical of P , and Uop = Ru(P

op).
It is a theorem of Grosshans [18] thatG/U is a strongly quasi-affine variety; i.e., k[G/U ]

is finitely generated (“strong”) and the canonical map G/U → Spec k[G/U ] is an open em-

bedding (“quasi-affine”). We let G/U := Spec k[G/U ], the “affine closure” or “affinization”
of G/U . This is generally a singular variety, which we shall call a paraspherical space.1

Following the work of Gelfand-Graev2, Gelfand-Graev-Piatetski-Shapiro [13], Kazhdan
[20], and Braverman-Kazhdan [6; 9] on normalized intertwining operators and the mysertious
Weyl group action on functions or D-modules on G/U(B) (B a Borel), we hope to establish
an involutive Fourier transform

F := FP op,P : S(G/U(P )(Fq),C)→ S(G/U(P op)(Fq),C)

where S means a well-chosen3 space of C-valued functions on Fq rational points of G/U .4

We would also like to upgrade this, eventually, to a functor between categories of Ql-adic

1The homogeneous variety G/U(P ) is sometimes called “parabolic basic affine space.” However, since this
space is neither basic nor affine, we are dissatisfied with this nomenclature. Our preferred terminology is
naturally derived from Gelfand’s elegant term “horospherical space” for G/U(B) (B a Borel).
2It would appear that the first paper on the Weyl-group action on D-modules over G/U is an unpublished
article by S. Gelfand and M. Graev from the 1960’s (see [16] for some more history). For the action of W
on functions on G/U in the adelic setting, see [13], Chapter 3 (“Representations of Adéle Groups), section
5 (“The Space of Horopsheres”), page 361.
3At this point, we will be intentionally vague regarding the meaning of “well-chosen.” We will be specific in
concrete examples.
4This particular involution would correspond to the normalized intertwining operator giving the “longest”
element of the Weyl Group in the Gelfand-Graev action. Of course, we would, above all, like to construct
normalized intertwining operators in general for the spaces S(G/Ui,C), where Ui = Ru(Pi) are the unipotent
radicals of the parabolic subgroups Pi containing a fixed Levi factor M ⊂ G. In other words, we would like
to find transforms between the function spaces

Fji : S(G/Ui,C)→ S(G/Uj ,C)

intertwining the natural G×M -actions, such that

Fii = Id and Fkj ◦ Fji = Fki.
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Weil sheaves on G/U and G/Uop, that correspond to the above transformations under
Grothendieck’s fonctions-faisceaux.

We expect this transform to satisfy a few desiderata:

Ansatz 1). F must intertwine the natural G×M action

((g,m)[f ]) (x) = f(g−1xm)

on the two function spaces.

Observe that this ansatz precludes the transformation from coming from an underlying
map of spaces: there is no map G/U → G/Uop intertwining the two standard G×M -actions.

Now, there is an natural candidate for a transform satisfying 1); we call this the Radon
transform:

R : S(G/U(P ) (Fq),C)→ S(G/U(P op) (Fq),C)

defined by

(1) f 7→ R(f) :=

{
x 7→

∑
u∈Uop

f(xu)

}
.

This is equivalent to the “pull-push” of the function f along the roof:

G

G/Uop G/U.

Note that the Radon transform manifestly intertwines the G×M actions (since M normalizes
U). However, the transform is not involutive; that is to say, in general

R′R(f)(x) =

{
x 7→

∑
u∈U

∑
u∈Uop

f(xuu)

}
6= f(x).

In [9] Braverman-Kazhdan “correct” (i.e., normalize) the Radon transform by convolv-
ing the it with a measure on (a subtorus of) Z(M) ⊂ T .5 Recall that Braverman-Kazhdan
are working with functions on spaces of the form G/[P, P ].6 We are considering spaces of the
form G/U(P ); thus, by analogy, we should be convolving the Radon transform by a measure
on the Levi M :

5Recall that Braverman-Kazhdan are working over local fields, not finite fields. This is why we use the
language of “measures”, even though over finite fields, these are the same as “functions.”
6These have since come to be called “Braverman-Kazhdan” or BK-spaces as in [15; 14].
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(2) f 7→ F(f) :=

{
x 7→

∑
u∈Uop,m∈M

f(xmu)J(m)

}
.

Notice that if such a transform is to intertwine the M -action, the function J must be central
on M ; i.e., M -conjugacy-invariant.7

However, proceeding exactly as in (2) is unsatisfactory. To see this, we note that even
when G = SL2 – the most basic archetypal case (discussed in greater detail below) – the
Fourier transform of Braverman-Kazhdan cannot be written in the form (2). Indeed, recall
that the BK Fourier transform [6; 9]

F : S(SL2/U(k),C)→ S(SL2/Uop(k),C),

where k is a local field and S is Braverman-Kazhdan Schwartz space, is just the symplectic
Fourier transform on the space of all compactly supported locally constant C-valued functions
on k2 = A2(k):

F(f)

[(
b
d

)]
=

∫a
c

∈A2(k)

f

[(
a
c

)]
ψ(ad− bc)dadc

for all f ∈ C∞c (A2(k),C), where ψ : Fq → C is an additive character. (Recall that A2 ∼=
SL2/U ; we will discuss this in more detail below.)

Notice, moreover, that this symplectic Fourier transform for A2 works perfectly well
over finite fields; we replace the integral by a finite sum and the additive Haar measure by
the counting measure:

(3) F(f)

[(
b
d

)]
=

∑
a
c

∈A2(Fq)

f

[(
a
c

)]
ψ(ad− bc).

In particular, this F is involutive by finite field Fourier inversion. We will take this as
the basic model from which we will attempt to generalize to arbitrary G and P . We have:

Ansatz 2). The Fourier transform F takes the form:

(4) F(f)(y) =
∑
x∈G/U

f(x)〈x, y〉

for all y ∈ G/Uop, where 〈−,−〉 : G/U(Fq)×G/Uop(Fq)→ C is a C-valued pairing between

G/U and G/Uop. The pairing 〈−,−〉 depends upon choice of an additive character ψ : Fq →
C. In the case where G = SL2 and P is the Borel, F is given by (3).

7For a M a torus, as in the case where P = B is a Borel, this property comes for free; tori are commutative.
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Now we can see why we ought not to proceed directly as in (2): the (left) action
of TUop on SL2/U is not transitive; however, the pairing 〈−,−〉 is nonzero everywhere on

G/U ×G/Uop (in particular, it is nonzero on the complement of yTUopU for any y). Hence
we cannot write the symplectic Fourier transform (4) in the form (2).

In the context of [6; 9], this consideration is not significant, since Braverman-Kazhdan
are dealing with integration over local fields. As the complement of the “big” TUop-orbit has
measure 0, a measure defined on the “big” orbit (via convolving the Haar measure on Uop with
some measure on T ) completely defines a smooth measure on G/U(k). Similarly, Braverman-

Kazhdan do not have to contend with the difference between G/U(k) and G/U(k), since
complement of the former in the latter has measure 0 over local fields.

Over finite fields, however, the rational points of Zariski-closed subsets have positive
measure. Thus there are differences between transforms of type (2) as opposed to (4), and

between functions on G/U as opposed to functions on G/U . Appeal to the SL2 case shows

that we should prefer transforms of type (4) and functions on G/U .
However, we might hope that some remnant of the “normalized” transform of Braverman-

Kazhdan can persist in the finite field setting. In particular:

Ansatz 3). If y ∈ xUMUop, then there should exist a function M → C such that, if
y = xumu, then 〈x, y〉 = J(m). The function J should be invariant under M -conjugacy.

Thus we are insisting that the kernel 〈−,−〉 restrict to the form (2) when x and y are
in the most “generic” relative position.

Finally, we record as a final ansatz the most important property that we expect of
our Fourier transform. The whole point of normalization is to obtain transforms between
function spaces that compose well (see footnote 4); in our case (dealing with only P and
P op), this means involutivity.

Ansatz 4). (Involutivity.8) There must be a transform F ′ := FP,P op : S(G/U(P op)(Fq),C)→
S(G/U(P )(Fq),C), defined identically to F (but swapping the data for P and P op), such
that

F ′ ◦ F = Id.

As noted in footnote 8, if we identify the spaces G/U and G/Uop (which are isomorphic as
varieties, even if no such isomorphism intertwines the standard G×M actions), the involutive
transform F is then seen to square to one. Recall that the standard Fourier transform has
fourth power one. So perhaps it would be more apropos to call our transform a Tworier as
opposed to a Four ier transform.

The rest of this paper is structured as follows:

In section 2, we discuss the fundamental example of G = SL2 in detail.

8 Of course, it is slightly erroneous to speak of F as involutive, since is is a map between two different spaces.
But, as we shall see, these spaces often can be identified with one another, in whichh case, F will turn out
to be ivolutive.
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In section 3, we will try to extract certain general ideas from the SL2 case; this will
lead us into discuss the Wang Monoid and the Slipper pairing, which are useful in our efforts
to construct a Fourier transform satisfying Ansatz 4).

In section 4, we scrutinize Braverman-Kazhdan’s work on normalized intertwining op-
erators in the local field setting. We describe how this motivates the introduction Braverman-
Kazhdan’s gamma sheaves as the final ingredient in the construction of our Fourier transform.
We conclude Section 4 by, finally, giving our proposed construction of the Fourier transform.
It is rigged so as to satisfy Ansatz 1), 2) and 3); we state Ansatz 4) (involutivity) as a
conjecture. We will also provide a conjectural description of the relevant function space S.

The second half of this paper offers evidence for the involutivity conjecture by analyzing
specific cases.

In section 5, we discuss the case or mirabolic subgroups of SLn. In this case, involutivity
follows from finite-field Fourier inversion on a vector space. Here the Schwartz Space consists
of all functions on rational points.

In section 6, we discuss the central new result of this paper: a Fourier transform for
functions on a certain quadric cone in even-dimensional affine space. The caveat is that
we must assume that the function has an average of 0 under the scalar action. We define
S(X(Fq),C) to be the space of functions subject to this constraint. Then we show that
the Fourier transform is indeed involutive. This Fourier transform for quadric cones offers
an interesting complement to the recent results of Laumon-Letellier [25], who construct a
Fourier transform for functions on the rational points of the quotient stack of a quadric cone
by the Gm scalar action, in odd -dimensional affine space. Our Fourier transform crucially
involves Kloosterman sums in the kernel; involutivity is equivalent to some (possibly new)
identities for Kloosterman sums.

In section 7, we see how the result of section 6 implies involutivity of F for opposite
Borels of SL3 (provided we restrict to functions in S, i.e., whose average under the scalar
action is 0). This allows us to construct finite-field normalized intertwining operators for
SL3. This gives us an action of S3 on S, which appears to be the first example of a family
of normalized intertwiners for groups over finite fields (other than the basic case of SL2).

In section 8, we see how the result of section 6 implies involutivity in the case of Sp4

and the opposite Siegel parabolics.

2. The Case of SL2

In this section, let G = SL2. Then, up to conjugacy, we have only one parabolic, the
upper triangular Borel,

B :=

{(
∗ ∗
0 ∗

)}
⊂ SL2,

with unipotent radical U := U(B) = [B,B] given by
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U :=

{(
1 ∗
0 1

)}
⊂ B.

We observe that G/U → A2 via the map:(
a b
c d

)(
1 ∗
0 1

)
7→
(
a
c

)
,

which is well-defined. The map is isomorphic onto its image, which consists of the set of first
columns of matrices in SL2 – that is to say, every nonzero vector. Thus SL2/U ∼= A2\{(0, 0)}.
Moreover, as every regular function on A2 \{(0, 0)} extends canonically to a regular function
on A2 (a computation either verifiable directly or by appeal to the algebraic Hartog Lemma9),
we see that

SL2/U(B) = SL2/[B,B] ∼= A2.

Observe that, in particular, SL2/U is smooth – this is, in fact, quite miraculous; most
affinizations of quotients G/U(P ) are singular.

Let T denotes the standard torus in SL2. We have:

Bop :=

{(
∗ 0
∗ ∗

)}
⊂ SL2,

with unipotent radical U(B′) = [B′, B′] given by

Uop :=

{(
1 0
∗ 1

)}
⊂ B.

And, as with B, observe that we have a map G/Uop → A2 via:(
a b
c d

)
7→
(
b
d

)
,

exhibiting SL2/U
op as A2 \ {(0, 0)}, with affine closure A2.

The critical ingredient in Braverman-Kazhdan’s Fourier transform is to notice a G-
invariant symplectic duality between these two A2’s, and then to define the functional trans-
form as a linear (symplectic) Fourier transform, leaving Fourier inversion to automatically
take care of involutivity. But observe that there are actually two pairings here, one over Fq
taking values in A1(Fq), and one taking values in C given by the composition:

SL2/U(Fq)× SL2/Uop(Fq)→ A1(Fq)
ψ−→ C((

a b
c d

)
mod U,

(
a′ b′

c′ d′

)
mod Uop

)
7→ ad′ − cb′ 7→ ψ(ad′ − cb′)

where ψ : Fq → C is an additive character.

9Indeed, the case of A2 \ {(0, 0)} is perhaps the most well-known example of Hartog’s Lemma.
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So let us scrutinize the first “Fq” duality between SL2/U and SL2/Uop, with values in
A1.

Observe that we have an isomorphism between the double-unipotent quotient and A1:

(5) Uop\SL2/U ∼= A1,(
1 0
∗ 1

)(
a b
c d

)(
1 ∗
0 1

)
7→ a.

In particular, we see that the function a : SL2 → A1 is the only double-unipotent invariant
function on SL2. And observe that A1 = Spec k[a] has a multiplicative monoid structure
such that (A1)× ∼= Gm

∼= T .
We see that we may define the A1-pairing via

S : SL2/U × SL2/U
op → Uop\SL2/U ∼= A1,

(gU, hUop) 7→ Uoph−1gU

which is manifestly G-invariant since Uoph−1gU = Uop(g′h)−1(g′g)U .
Indeed: (

a′ b′

c′ d′

)−1(
a b
c d

)
=

(
ad′ − cb′ ∗
∗ ∗

)
so that

(6)

((
a b
c d

)
mod U,

(
a′ b′

c′ d′

)
mod Uop

)
7→ ad′ − cb′

as desired. Note, furthermore, that if the elements of G/U(B) and G/U(B′) come from the
same element g of G (i.e., if a = a′, . . . , d = d′), then the pairing yields det(g) = 1.

What does this pairing mean? If we are given two elements gU and hUop of G/U and
G/Uop, respectively, then, generically they will pair to an element of T = (A1)× ⊂ A1. This
will be the unique element t ∈ T such that we have

g

gU htUop

under the projections

G

G/U G/Uop.
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Thus saying that the C-valued pairing 〈−,−〉 : G/U ×G/Uop → C factors through S via

SL2/U × SL2/Uop S−→ A1 ψ−→ C

is precisely the compromise of a transform like (4) with one like (2): we see that, generically,
when gU intersects the T -orbit of hUop, the unique t bringing one into contact with the
other is given weight J(t) := ψ(t) = 〈gU, hUop〉.

Now, observe that we may extend S to a map SL2/U×SL2/Uop → A1. Identifying the
two affine closures with A2 as above, we see that this pairing becomes, simply, the standard
symplectic bilinear form on A2: ((

a
c

)
,

(
b′

d′

))
7→ ad′ − cb′.

Thus letting ψ ◦ S := 〈−,−〉 in (4) gives us the involutive Fourier transform (3) of
Braverman-Kazhdan.

3. The Wang Monoid and the Pair of Slipper’s

We now are going to generalize what we have found for SL2. Note that our ultimate
goal is to construct a C-valued pairing 〈−,−〉 such that the transform (4) is involutive. What
careful study of the SL2 example revealed is that, for it to resemble a “normalization” of the
Radon transform, it should factor as:

G/U ×G/Uop S=?−−→??
???−→ C

where ?? is another variety over Fq, and ??? is a C-valued function on this space.
In this section, we will offer a potential answer to the question of what the space ??

is and how we might define the map S =?.
First let us turn our attention to the space ??. In the case of SL2, we saw that it

turned out to be A1, which contains Gm = T as an open subset. Thus we expect, in general,
that the space ?? should be some kind of enlargement M ⊃M of the Levi. Even better: we
should like M to be a reductive monoid whose group of invertible elements is M .

3.1. The Wang Monoid. There is a perfect candidate here, which we will call the Wang
monoid. For more details about the Wang monoid, see Wang’s article [29]. We will offer just
one very quick and elegant definition of this monoid which is particularly well-suited to our
purposes. But the Wang monoid is a rich and interesting structure, with several different
interpretations, and connections to many areas of mathematics (e.g., Geometric Langlands).

Consider the actions of U(P ) and U(P op) on G on the right and on the left respectively.
These actions induce actions on the ring of functions, k[G]. Then we let

M := Spec k[G]U(P op)×U(P ).

Wang [29] shows that this is an affine, normal, algebraic monoid, with group of units M ;
he also describes its combinatorial description via its Renner Cone. For other information
on the relationship between affine embeddings of G/U(P ) and reductive monoids containing
M , we refer the reader to [1].
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3.2. The Slipper Pairing. Now we will turn our attention to the map S =?. We will call
this map the Slipper Pairing (because of the author’s surname, and the natural predilection
for Slippers to come in pairs), and let

S : G/U(P )×G/U(P op)→M

be given as follows. We first define the restriction:

S : G/U(P )×G/U(P op)→M,

(gU(P ), hU(P op)) 7→ U(P op)h−1gU(P ),

and then extend to affine closures. Notice that, generically, S(gU(P ), hU(P op)) ∈ M , in
which case it is the unique element m ∈M such that we have

g

gU hmUop

under the maps

G

G/U(P ) G/U(P op).

That is to say, it the unique element of m ∈ M whose right action on hUop makes gU and
hmUop “come from” the same element of G. This comports well with the SL2 case and with
Ansatz 4).

4. The Function J

4.1. Braverman-Kazhdan Normalization. The last thing we must address before we
have fully defined the C-valued pairing 〈−,−〉 and thus the Fourier transform (4) is the
question of the function:

J : M → C.

As we have already discussed, for G×M -equivariance to be preserved, this map must

be central; i.e., invariant under the action conjugation action of M . (Recall that M = M
×

so conjugation by M is well-defined.)
All in all, we want a function J : M → C such that:

1) J is central, and

2) J depends upon an additive character ψ.

Moreover:
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3) when P = B, a Borel, we expect that J , when restricted to M = T , should be
analogous to those normalizing factors that are described in Braverman-Kazhdan [9] (since,
in the case P = B, we have [P, P ] = U(P )). Moreover, we hope that, in the general case, J
(restricted to M), will have at least some kinship with the normalizing factors described in
[9] for G/[B,B].

We will therefore closely analyze the normalized intertwining operators of Braverman-
Kazhdan as constructed in [9]. In this setting G is a reductive group over a local field k; P
and Q are two parabolics subgroups containing the fixed Levi M (such that both have Levi
quotients M). We let O denote the ring of integers of k. Braverman-Kazhdan construct a
normalized intertwiner:

S(G/[P, P ](k),C)→ S(G/[Q,Q](k),C).

Given a graded representation of a dual torus T∨, Braverman-Kazhdan define a dis-
tribution on T , as follows: let V =

⊕
i∈Z Vi be a graded finite-dimensional representation

of T∨. We may diagonalize this action, and we choose a homogeneous eigenbasis of T∨ in
V , which we shall write as λ1, . . . λk, where λi ∈ X∗(T∨), k = dimV , where we permit
(somewhat abusively) λi and λj to equal the same element of X∗(T∨) for distinct i and j if
that weight has multiplicity in V . Observe that we may consider λi ∈ X∗(T ) by duality. Let
ni be the homogeneous degree j of λi in the grading V =

⊕
j∈Z Vj. Then we let ηV,ψ be the

distribution on T defined via:

f 7→
∫
Gkm
f(λ1(t1) · · ·λk(tk))(7)

· ψ(t1)|t1|n1/2 · · ·ψ(tk)|tk|nk/2

· |δP (λ1(t1) · · ·λ1(tk))|1/2

· d×t1 · · · d×tk

where f ∈ C∞c (T,C); δP (x), for x ∈ P , is the module character of P ; d×ti = q−1
q
· dti/|ti| is

the multiplicative Haar measure10 on Gm (with q the order of the residue field of O).
Now, we let M∨ be the Langlands dual group of M (which is defined over C). We

have that (Mab)∨ = Z(M∨). Let u∨P and u∨Q denote the nilpotent radicals of the parabolic
subalgebras of g∨ dual to P and Q. Let u∨P,Q = u∨P/u

∨
P ∩ u∨Q. Now, we let e, h and f be a

principal sl2-triple inside the dual Levi Lie algebra m∨.
Braverman-Kazhdan consider two different graded representations of the torus Z(M∨):

the representation u∨P,Q under the adjoint action of Z(M∨) and its subrepresentation (u∨P,Q)e,
where V e for a g∨-rep V means the subspace ker (ad e). The grading here is given by the

10For a group G defined over k, when choosing a (left or right) Haar measure, we will pick the unique such
measure that assigns a volume of 1 to G(O).
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eigenvalues of ad(h), the Cartan in our sl2-triple. Thus we obtain11 two different measures
on Mab; that of ηu∨P,Q, ψ and that of η(u∨P,Q)e, ψ.

Observe that [Q,Q]/([Q,Q] ∩ [P, P ]) = UQ/(UP ∩ UQ). Let us call this space UQ,P .
This has a canonical Haar measure du (which we normalize so that UQ,P (O) has volume 1).
Now we let R : C∞c (G/[P, P ](k),C)→ C∞(G/[Q,Q](k),C), the Radon transform, be given
by:

R(f)(x) =

∫
UQ,P

f(xu)du

for all x ∈ G/[Q,Q](k). We now may convolve this by our measures on Mab to get the two
transforms:

GQ,P (f) := ηu∨P,Q, ψ ∗ R(f),

and

FQ,P (f) := η(u∨P,Q)e, ψ ∗ R(f).

The transform FQ,P is the Braverman-Kazhdan Fourier transform. They prove that
FQ,P , FP,Q – as well as GQ,P and GP,Q – extend to adjoint operators L2(G/[P, P ],C) →
L2(G/[Q,Q]).

[9] demonstrates another interesting relationship between intertwiners for Borels and
the transform G. Observe that in the case of Borels, the sl2-triple in the dual torus is trivial,
so all the weights ni in (7) are 0, and V e = V for any T∨-rep V . Thus G and F agree in this
context.

Let B ⊆ P and B′ ⊆ Q be two Borels contained in P and Q respectively, such that
their relative position w in the Weyl group of G is of minimal length. Then we have canonical
projections π : G/[B,B] → G/[P, P ] and π′ : G/[B′, B′] → G/[Q,Q]. The fibers of these
projections are isomorphic to M/(M ∩P ), which has an open U(B)op∩M -orbit. Integrating
the action of U(B)op∩M with respect to the Haar measure on each fiber, we may define maps
π! : C∞c (G/[B,B],C) → C∞c (G/[P, P ],C) and π′! : C∞c (G/[B′, B′],C) → C∞c (G/[Q,Q],C).
Braverman-Kazhdan show how the following diagram commutes:

(8)

L2(G/[B,B],C) L2(G/[B′, B′],C)

L2(G/[P, P ],C) L2(G/[Q,Q],C).

π!

GB′,B

π′!

GQ,P

11Notice that a measure η on Mab does indeed act via convolution on functions f ∈ Cc(G/[P, P ],C): say

p : Gkm
∼−→ Mab is an isomorphism. We pull back the measure η to Gkm along p. Then we may lift p to a

homomorphism p̃ : Gkm → T ⊆ M , such that composing with the natural projection M → Mab yields p.
Then we define the action of η via the formula

∫
Gkm

f(g · p̃(t))[p∗(η)](t). The integral is independent of the

choice of lift p̃ because of f ’s right-invariance under [P, P ].
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Observe that, adopting the terminology of [9], if we consider the Z(M∨)-representation
(u∨P,Q)junk = u∨P,Q/(u

∨
P,Q)e, then:

(9) ηu∨P,Q, ψ = η(u∨P,Q)junk, ψ ∗ η(u∨P,Q)e, ψ

and

(10) GQ,P = η(u∨P,Q)junk, ψ ∗ FQ,P .

Now we return to our original problem. Notice, firstly, that in the cases we are consid-
ering, Q = P op, whence u∨P,Q = u∨P , the Lie algebra of U(P∨). For our purposes, we will adopt
the philosophy that we we should “keep the junk” – i.e., if one wants to intertwine function
spaces (or sheaves) on G/U(P ) as opposed to G/[P, P ], then we should prefer the operator
G to F (and correspondingly prefer the representation u∨P,Q to (u∨P,Q)e and the distribution
ηu∨P,Q, ψ to η(u∨P,Q)e, ψ).

In addition to the fact that the operator G satisfies the elegant property (8), there
is another, more philosophical reason to adopt the perspective of favoring G to F for our
purposes. This is that, in general, there seems to be a natural affinity

G/[P, P ]! (u∨P )e

G/U(P )! (u∨P ).

See, for instance, the computation of the IC sheaves of the two corresponding Drinfeld
compactifications [5].

Of course, we desire a distribution on M (or, in fact on the Wang monoid M). The
distributions in Braverma-Kazhdan of the form ηV, ψ (for V a T∨-representation) only live
on the torus Mab. We would like to find the analogue of the distributions ηu∨P , ψ on the whole

Levi M – and then to extend it to M . And, of course, we would like to do this over finite
fields.

A perfect candidate suggests itself, from (somewhat independent) work of Braverman-
Kazhdan: the γ-sheaves for reductive groups [8].

4.2. The Definition of the γ-sheaf. The BK γ-sheaf ΦG,ρ,ψ is sheaf on G, a reductive

group, determined by a representation ρ of the Langlands dual group G∨ → GLn(Ql) and an
additive character ψ. These sheaves are constructed over Ql, so we will pick an isomorphism
C ∼= Ql to translate this into C-valued functions.

ΦG,ρ,ψ is constructed as follows12: let T∨ ⊂ G∨ be a maximal torus. Restricting ρ to
T∨ we may diagonalize the representation ρ with respect to the weights of T∨, which gives
us a multi-set of characters {λi}, where λi : T∨ → Gm. By duality, these define a multi-set
of cocharacters λi : Gm → T . We consider the diagram:

12Here we are following Cheng-Ngô [12].
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Gn
m

A1 T

pλTr

where Tr is given by summing the coordinates in each factor of Gm, and pλ is given by the
product of the maps λi : Gm → T . (Note that there are n = dim ρ of the λi, counting each
with multiplicity; thus each factor of Gm corresponds to a λi and we define pλ : (x1, . . . , xn) 7→
λ1(x1) · · ·λn(xn) ∈ T .) Let Lψ be the Artin-Schreier sheaf on A1 associated to the additive
character ψ. We define the sheaf ΦT,ρ,φ on T via

ΦT,ρ,ψ := pλ !Tr∗(Lψ)[n]
(n

2

)
This sheaf is perverse local system over its support (which is the subtorus of T given by the
image of pλ). Moreover, when the λi satisfy a technical condition called σ-positivity (which
will prevail in the cases of interest to us) it is irreducible and isomorphic to pλ ∗Tr∗(Lψ)[n]

(
n
2

)
.

It is sometimes called the Kloosterman sheaf, the hypergeometric sheaf, or the γ-sheaf for
tori.

We now define an action of the Weyl group W of (G, T ) on the sheaf ΦT,ρ,ψ. This is

the most subtle part of defining the γ-sheaf. Let Vρ denote the underlying vector Q`-space
of the representation ρ. Diagonalizing Vρ with respect to T∨, we obtain the decomposition:

Vρ =
m⊕
i=1

Vλi .

Let ni = dimVλi , the multiplicity of λi in Vρ. Of course n1 + · · ·+ nm = n. Define:

λ = (λ1, . . . , λ1, . . . , λm, . . . λm) ∈ X∗(T )n

with each λi appearing ni times.
Now, let us pick a basis {vi,j, 1 ≤ j ≤ ni} for Vλi , for each i = 1, . . .m. Let Ai = {vi,j}

for 1 ≤ j ≤ ni, and let A = A1 t . . . t Am. We see that A is a basis for Vρ; and we may
identify the Weyl group of GL(Vρ) with the symmetric group Sn = Perm(A). We define

Sλ = Sn1 × · · · × Snm ⊆ Sn

to be the subgroup of σ ∈ Perm(A) such that σ(Ai) = Ai.
We now consider a slightly larger subgroup of Sn, which we will denote S ′λ. This

subgroup allows us to permute the subset Ai in addition to the elements within each Ai. In
particular it consists of those ξ ∈ Perm(A) such that there exists σ ∈ Sm (thought of as
acting on the indices i = 1, . . .m) such that ξ(Ai) = Aσ(i). Observe that such a ξ can only
exist if ni = |Ai| = |Aσ(i)| = nσ(i) for all i. We obtain an exact sequence of groups

1 Sλ Sλ′ Sm,

13
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where the image of the last map consists of those permutations of {1, . . . ,m} preserving the
function i 7→ ni.

Letting W be the Weyl group of G, we see that there is a map ρW : W → S ′λ/Sλ ⊆ Sm.
We construct an extension W ′ of W by Sλ as in the diagram

1 Sλ W ′ W 1

1 Sλ S ′λ S ′λ/Sλ 1

ρW

We see that W ′ is the subgroup of W × S ′λ consisting of those (w, ξ) such that ξ 7→ ρW (w)
under the natural projection S ′λ → S ′λ/Sλ. The map Sλ sends σ → (1, σ).

The homomorphism pλ : Gn
m → T is W ′ equivariant; here W ′ acts on the the factors

of Gn
m via its image in S ′λ ⊆ Sn, and W ′ acts on T via its projection to W . Thus we have a

canonical isomorphism

ι′w′ : (w′)∗ΦT,ρ,ψ
∼−→ ΦT,ρ,ψ

for all w′ ∈ W ′. However, we prefer a twisted version of this isomorphism. For w′ = (w, ξ) ∈
W ′, we let sign(w′) = sign(w)sign(ξ), where (w) = ±1 is given by the sign of ρ(w) in Sm,
and sign(ξ) is the sign of ξ in Sn (recall that ξ ∈ Sλ = Sn1×· · ·×Snm ⊆ Sn). We now define
our preferred action of W ′ on ΦT,ρ,ψ:

ιw′ = sign(w′) · ι′w′ : (w′)∗ΦT,ρ,ψ
∼−→ ΦT,ρ,ψ,

where multiplication by sign(w′) means the scalar multiplication of the morphism ι′w′ by ±1.
We next consider the Grothendieck-Springer simultaneous resolution:

G̃ T

G T �W

q̃

c̃

q

c

where

G̃ = {(g, hB) ∈ G×G/B : h−1gh ∈ B},

c is the Steinberg morphism, c̃ : (g, hB) 7→ π(h−1gh) (where π : B � T is the canonical
projeciton), q is the obvious projection, and q̃ : (g, hB) 7→ g. Notice that if we restrict ev-
erything to the regular semisimple locus (of both T and G), the diagram becomes Cartesian:
the upper row is a W -torsor over the lower.

Now we consider the sheaf on G given by pull-pushing ΦT,ρ,ψ along the Grothendieck-
Springer fibration:

IndGT (ΦT,ρ,ψ) := q̃ ! c̃
∗(ΦT,ρ,ψ)[d],

14
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where d = dimG−dimT . Because the Grothendieck-Springer map q̃ is small and proper, we
see that IndGT (ΦT,ρ,ψ) is a perverse sheaf on G. Let jrss : Grss → G denote the open inclusion
of the regular semisimple locus of G. We see that

IndGT (ΦT,ρ,ψ) ∼= jrss
!∗ j

rss∗IndGT (ΦT,ρ,ψ).

Since ΦT,ρ,ψ is W -equivariant (under ιw), and G̃rss → Grss is a W -torsor, W acts on
jrss∗IndGT (ΦT,ρ,ψ). Thus, by functoriality of the intermediate extension, W acts on IndGT (ΦT,ρ,ψ).

At last we may define the γ-sheaf.

Definition 4.1. The γ-sheaf of ρ on G, written ΦG,ρ,ψ, is defined to be the W -invariant
direct factor of IndGT (ΦT,ρ,ψ).

We will denote this simply as Φρ when G and ψ are clear. Observe that

Φρ = jrss
!∗ j

rss∗ (Φρ) ,

so we may offer another definition of Φρ as follows. If we restrict the sheaf ΦT,ρ,ψ to T rss,
we see that it is a W -equivariant perverse sheaf on T . Thus it descends to a perverse local
system on T rss �W , which we shall call Φλ. Then

Φρ
∼= jrss

!∗ c
rss∗Φλ.

Thus we see that the γ-sheaf is, in essence, a Kloosterman sheaf on the maximal
torus, extended by conjugacy-invariance to the regular semisimple locus Grss of G, and then
extended (via the “intermediate extension”) to G. Thus “generically” the associated function
is a convolution of ψ(t)’s, like in the normalizing factors of Braverman-Kazhdan’s normalized
intertwining operators.

4.3. Construction of the Fourier Transform. Let the representation ρ denote the ad-
joint representation of M∨ on u∨P , and consider the corresponding γ-sheaf ΦM,u∨P ,ψ

. The
choice of u∨P under the adjoint action is part of our “keep the junk” philosophy described
above: we are trying to emulate the distribution ηu∨P ,ψ and the transform G.

ΦM,u∨P ,ψ
is, of course, merely a sheaf on M ; we really want a sheaf on the Wang monoid

M . Of course, if we wish to preserve perversity, there is a canonical way to do this. Thus,
letting j : M →M be the open inclusion, we define:

(11) J := j!∗(ΦM,u∨P ,ψ
).

Now, at last, we may state our conjecture.

Definition (Sheaf Version). Let G be a reductive group, with parabolic subgroup
P , Levi factor M , and maximal torus T . Let M be the Wang Monoid of M , S be the Slipper
pairing, and J the γ-sheaf on M defined above. Consider the diagram:
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G/U(P op)×G/U(P ) M

G/U(P op) G/U(P )

π1 π2

S

We define the transform

FP op,P : D[
c

(
G/U(P ),Ql

)
→ D[

c

(
G/U(P op),Ql

)
given by

(12) F(S ) = Rπ1 !

(
π∗2 (S )⊗S∗ (J)

)
.

We now define a class of “special” sheaves and functions; these will be the sheaves/functions
on which we expect the Fourier transform to be involutive. This definition is motivated by
numerical evidence from specific examples 13.

Definition 4.2. We say that a sheaf S is “special” if π!(S ) = 0 for the quotient π : G/U →
(G/U)/Gm, the latter viewed as a stack, where the Gm action is given as follows. Consider
the roots {α∨}P whose 1-parameter subgroup lies in U(P )∨. Let Π∨P denote those coroots
in {α∨}P which are not decomposable into a positive linear combination of other coroots in

{α∨}∨P . Let α̌P denote the sum of such α∨ ∈ Π∨P . Then Gm
α̌P−→ Z(M) ⊂ T ⊂ M acts on

G/U on the right.

Similarly, we define a function f : G/U(Fq)→ C to be “special” if

(13)
∑
t∈F×q

f(xα∨P (t)) = 0

for all x ∈ G/U(P )(Fq). We will let S denote the class of special sheaves/functions.

Observe that the property of specialness – i.e., of being annihilated when summed over
the action of a torus – is similar to the defining property of cuspidal automorphic forms,
which are annihilated when integrating over the action of a unipotent subgroup. In fact,

13 See section 6 and 7. It appears that, more generally, for an intertwiner G/U(P ) → G/U(P ′), we may
define the coroot α∨P ′,P given by the sum of all “simple” coroots whose 1-parameter subgroup is contained

in U(P )∨∩U(P ′op)∨. That is to say, we consider the collection of coroots of G whose 1-parameter subgroup
lies in U(P )∨ ∩ U(P ′op)∨. We let Π∨P,P ′ denote those coroots in this set that are not the positive linear

combination of two such. Then we let α∨P ′,P be the sum of the coroots Π∨P,P ′ . This in turn gives us a right

action of Gm on G/U(P ) via Gm
α̌P−−→ Z(M) ⊂ T ⊂M , which has a natural right action on G/U . Thus we

may define π to be the canonical morphism of stacks G/U → G/U(P )/Gm, and we may say that a sheaf S
is special with respect to the P  P ′ intertwiner if π!(S ) = 0. We expect that restricting to these sheaves
will permit us to compose intertwiners well – we will see this in the case of SL3.
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so-called “toroidal” automorphic forms (those with toral average 0, as in our case) have
appeared in, e.g., the work of Zagier [30].

We do not yet have a spectral interpretation of the notion of “specialness” – how-
ever, we can observe the following: in the case of SL2/U , a special function is one whose
average under the scaling action on A2(Fq) is 0. If we consider the scalar averaging map
Fun(A2(Fq))→ Fun(P1(Fq)∪ (∗/Gm)(Fq)), we see that taking this kernel is forcing f(0) = 0,
and killing off a copy of Steinberg⊕ Trivial from the representation Fun(A2(Fq)).

However, as this example suggests, we are not quite satisfied with having to restrict our
spaces of functions and sheaves: we did not have to do so in the above case of SL2. Indeed
involutivity of the 2-dimensional symplectic Fourier trnasform applies to all functions and
sheaves on A2 (as it simply follows from Fourier inversion for the Fourier-Deligne transform).
So we would really like the Fourier transform to apply to all sheaves/functions, as it does
in the case of SL2. As we will see in Section 5, we do not need to restrict to special
functions to achieve involutivity in the case of the mirabolic subgroup of SLn – here, as
in the special case of SL2 and the Borel, the Fourier transform reduces to the usual linear
Fourier transform. It is worth noting that in the case SL2 and the Borel, and more generally
mirabolics for SLn, the parapsherical space is smooth (in fact a linear affine space). In
all the cases we shall encounter below, special functions are only supported on the smooth
locus of G/U . 14 It is possible that our Fourier transform is a “principal term” of some
more general Fourier transform which does apply to all sheaves and functions – we might
imagine that the boundary terms relate to the algebraic geometry of the singularities of G/U .
Alternatively, we suspect that our Fourier transform may “lift” to a Fourier transform on
some desingularization of G/U(P ), where, we hope, involutivity applies without restriction.
15 In the meantime, we are uncertain if “specialness” – in spite of its intriguing relations
to “special” representations like the Steinberg, and Zagier’s toroidal automorphic forms – is
the “right” condition on our sheaves/functions.

We may now state our main conjecture:

Conjecture (Sheaf Version). The transform F defines, up to a Tate twist and
dimension shift, an involution on special sehaves. More precisely:

FP,P op ◦ FP op,P (S ) ∼= S [n](d).

We have also the “function” version of the above:

Definition (Function Version). Let J(x), for x ∈ M(Fq), denote the trace of

Frobenius on the stalk Jx, with values taken in C (via some isomorphism Ql
∼= C discussed

above). I.e., let J denote the function corresponding to the sheaf J. Then we let:

FP op,P : Fun(G/U(P )(Fq),C)→ Fun(G/U(P op)(Fq),C)

given by

14However, merely being supported on the smooth locus is not alone sufficient to cause our Fourier transform
to be involutive; see the formulae (22) in Section 6 for the double Fourier transformation of a general Dirac
mass.
15The author is attempting to verify this idea at the time of writing for SLn and the so-called Laumon
resolution [23; 22].
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(14) FP op,P (f)(y) =
∑
x∈G/U

f(x)J(S(x, y))

This defines G×M -equivariant transform of function spaces.

Conjecture (Function Version). Let f be a special C-valued function onG/U(P )(Fq).
Then F defines an involution (up to multiplication by a power of q) on f ; i.e.:

FP,P op ◦ FP op,P (f) = q2d · f.

5. The Mirabolic

Let G = SLn. The mirabolic (“miraculous parabolic”) subgroup of SLn is given by the
(n− 1) + 1 block parabolic:

P =




a1,1 a1,2 · · · a1,n−1 a1,n

a2,1 a2,2 · · · a2,n−1 a2,n
...

...
. . .

...
...

an−1,1 an−1,2 . . . an−1,n−1 an−1,n

0 0 . . . 0 an,n


 .

The unipotent radical is isomorphic to the vector space kn−1:

U(P ) =




1 0 · · · 0 a1,n

0 1 · · · 0 a2,n
...

...
. . .

...
...

0 0 . . . 1 an−1,n

0 0 . . . 0 1


 .

The Levi M ∼= GLn−1 is given by:

P =




a1,1 a1,2 · · · a1,n−1 0
a2,1 a2,2 · · · a2,n−1 0

...
...

. . .
...

...
an−1,1 an−1,2 . . . an−1,n−1 0

0 0 . . . 0 D−1


 .

where D = det[ai,j]1≤i,j≤n−1. Since D is determined by the upper left (n−1)× (n−1)-block,
we will often write M as just the collection of matrices [ai,j]1≤i,j≤n−1.

We see that the quotient G/U(P ) isomorphic to the locus of matrices in Matn,n−1 of
full rank (i.e., rank = n− 1):
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
a1,1 a1,2 · · · a1,n−1 a1,n

a2,1 a2,2 · · · a2,n−1 a2,n
...

...
. . .

...
...

an−1,1 an−1,2 . . . an−1,n−1 an−1,n

an,1 an,2 . . . an,n−1 an,n




1 0 · · · 0 ∗
0 1 · · · 0 ∗
...

...
. . .

...
...

0 0 . . . 1 ∗
0 0 . . . 0 1



7→


a1,1 a1,2 · · · a1,n−1

a2,1 a2,2 · · · a2,n−1
...

...
. . .

...
an−1,1 an−1,2 . . . an−1,n−1

an,1 an,2 . . . an,n−1

 .

Indeed, the image of this GLn under this map is Matrk=n−1
n,n−1 ⊂ Matn,n−1. On the other hand

the quotient variety G/U(P ) has dimension (n2 − 1)− (n− 1) = n(n− 1) = dim Matn,n−1.
Moreover, we can verify that the map is separable and bijective on points, proving the
isomorphism of varieties. The degenerate locus in Matn,n−1 has codimension 2 if n = 2, and
codimension n− 1 if n ≥ 3. In all these cases the codimension is ≥ 2, whence, by Hartog’s
Lemma we see that the affine closure G/U(P ) ∼= Matn,n−1. Note that this is smooth (and in
fact an affine space!). This is highly atypical – part of the the miracle of mirabolic subgroup.

Next we describe the space G/U(P op), the Wang Monoid, and the Slipper pairing.

G/Uop can be naturally identified Matn−1,n as follows: consider (gUop)−1 = Uopg−1. Then
we have:


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 . . . 1 0
∗ ∗ . . . ∗ 1




a−1
1,1 a−1

1,2 · · · a−1
1,n−1 a−1

1,n

a−1
2,1 a−1

2,2 · · · a−1
2,n−1 a−1

2,n
...

...
. . .

...
...

a−1
n−1,1 a−1

n−1,2 . . . a−1
n−1,n−1 a−1

n−1,n

a−1
n,1 a−1

n,2 . . . a−1
n,n−1 a−1

n,n



7→


a−1

1,1 a−1
1,2 · · · a−1

1,n−1 a−1
1,n

a−1
2,1 a−1

2,2 · · · a−1
2,n−1 a−1

2,n
...

...
. . .

...
a−1
n−1,1 a−1

n−1,2 . . . a−1
n−1,n−1 a−1

n−1,n

 .

Now, the Wang monoid is by definition Spec k[G]U(P )×U(P op). We see that the double-
unipotent-invariants are aij, for 1 ≤ i, j ≤ n− 1:

19



Aaron Slipper


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 . . . 1 0
∗ ∗ . . . ∗ 1




a1,1 a1,2 · · · a1,n−1 a1,n

a2,1 a2,2 · · · a2,n−1 a2,n
...

...
. . .

...
...

an−1,1 an−1,2 . . . an−1,n−1 an−1,n

an,1 an,2 . . . an,n−1 an,n




1 0 · · · 0 ∗
0 1 · · · 0 ∗
...

...
. . .

...
...

0 0 . . . 1 ∗
0 0 . . . 0 1



=


a1,1 a1,2 · · · a1,n−1 ∗
a2,1 a2,2 · · · a2,n−1 ∗

...
...

. . .
...

...
an−1,1 an−1,2 . . . an−1,n−1 ∗
∗ ∗ . . . ∗ ∗


Thus the Wang Monoid is Matn−1,n−1 (and observe that the Levi, isomorphic to GLn−1, is
indeed an open subset).

Under these identifications the Slipper pairing S(gU(P ), hU(P op)) := U(P op)h−1gU(P )
is simply given by the multiplication of matrices:

Matn,n−1 ×Matn−1,n → Matn−1,n−1(15)

(M,N) 7→ NM.

Now, we will compute the function J . To do this we must calculate the weight decom-
position of the adjoint representation of M∨ on u∨P . Recall that the Langlands dual of SLn
is PGLn, and that the dual of GLn−1 is GLn−1. Thus the weights of PGLn are given by{∑

i

aiπi :
∑

ai = 0

}

where πi : diag(t1, . . . , tn) 7→ ti. We see that the representaiton uP has weights {πi − πn}i
for i = 1, . . . n − 1. These correspond to the cocharacters ei − en : Gm → TM = TG, where
ei : t→ diag(1, . . . , t, . . . , 1), with t in the ith position.

Restricting to the upper (n− 1)× (n− 1) block, we see that the coweights in GLn−1

are simply ei, for i = 1, . . . , n− 1. Thus we have the diagram:

Gn−1
m

A1 (t1, . . . tn−1) TGLn−1

t1 + · · ·+ tn−1 diag(t1, . . . , tn−1)

Pushing an pulling the charcater ψ from A1 to T , we see that for all t ∈ T , the γ-sheaf for
the torus ΦT,u∨P ,ψ

has function ψ(tr(t)), where tr : T → A1 is the standard trace in GLn−1.
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Consider the local system E on Mat2 obtained by pulling back the Artin-Schreier sheaf
Lψ along the map tr : Mat2 → A1. Since this matches the γ-sheaf ΦT,u∨P ,ψ

when restricted
to T , we find that the γ-sheaf ΦM,u∨P ,ψ

agrees with E when we restrict both sheaves to the
rss locus of GLn−1. Thus, by the “principal of perverse continuation” [27], we see that J,
the intermediate extension of ΦM,u∨P ,ψ

to Mat2, is isomorphic to E (up to dimension shift and
Tate twist). Thus the function J is simply

(16) J(m) = ψ(tr(m)),

at least up to a factor of a power of q. Putting together (16) and (15) we find that the
Fourier transform is given by:

FP op,P (f)(N) =
∑

M∈Matn,n−1

f(M)ψ(tr(NM)).

But this is simply a standard Fourier transform on vector spaces! Because of this, we see
that involutivity holds as a consequence of standard Fourier inversion for vector spaces:
FP,P opFP op,P (f) = qNf for N = n(n− 1), for all C-valued functions f on the rational points

G/U(P )(Fq).16 17

6. The Kloosterman Fourier Transform on Affine Quadric Cones

We now describe an involutive Fourier transform for a class of functions on certain
affine quadric cones. The involutivity in this case will prove involutivity for two more exam-
ples of paraspherical spaces: the Borel for SL3 and Siegel parabolic for Sp4.

Let V ∼= kd be a vector space over Fq of dimension d. We let ψ : Fq → C be a nontrivial
additive character, as always. We let

X = {(v, v∨) ∈ V × V ∗ : 〈v, v∨〉 = 0}.

Observe that X is an affine quadric cone in k2d, with an isolated conical singularity at the
origin. There is a natural scalar action of Gm on this variety: λ·(v, w) = (λv, λw) for λ ∈ F×q .

For a ∈ Fq we let

Kl(a) :=
∑
t∈F×q

ψ
(a
t

+ t
)
,

be the standard Kloosterman function on Fq. Now consider the composite map

K : X ×X → A1 → C
16Observe that FP,P op will be the Fourier transform with respect to ψ. This is already seen in the case of
SL2, which is a spacial case of the mirabolic.
17Therefore we see that, in the the case of G = SLn and P the Mirabolic, the space S can be extended to
the entire space of functions Fun(G/U(P )(Fq),C). However, F does clearly preserve the space of special
functions (i.e., those whose average is 0 under the scalar action). It seems that the need to restrict to a

smaller function space may be related to the presence of singularities in G/U(P ). As already noted, the
mirabolic has an associated paraspherical space that is smooth; this may account for the lack of restrictions
on S.
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((u, u∨), (v, v∨)) 7→ 〈u, v∨〉+ 〈v, u∨〉 7→ Kl (〈u, v∨〉+ 〈v, u∨〉) .

Let

(17) S(X(Fq),C) =

f ∈ Fun(X(Fq),C) :
∑
λ∈F×q

f(λx) = 0

 .

Then we define on S the following transform:

(18) F(f)(y) =
∑

x∈X(Fq)

f(x)K(x, y).

Before we state our theorem, let us observe two things about the space S. Firstly, we
may see immediately that f(0) = 0. Thus f ∈ S is solely supported on the smooth locus of
the variety X. Secondly, we observe that F preserves the space S. Indeed:∑

λ∈F×q

F(f)(λy) =
∑
λ∈F×q

∑
x∈X(Fq)

f(x)K(x, λy).

But letting x = (u, u∨) and y = (v, v∨), we see that K(x, λy) = Kl(〈u, v∨〉 + 〈λv, u∨〉) =
Kl(〈λu, v∨〉+ 〈v, λu∨〉) = K(λx, y) by bilinearity. Thus we obtain:

∑
λ∈F×q

∑
x∈X(Fq)

f(x)K(x, λy) =
∑
λ∈F×q

∑
x∈X(Fq)

f(x)K(λx, y) =
∑

x∈X(Fq)

∑
λ∈F×q

f(λ−1x)K(x, y) = 0.

(As an aside will also note that
∑

λ∈F×q

∑
Kl(x, λy) = 1, unless 〈u, v∨〉+〈v, u∨〉 = 0, in which

case it is 1− q.)
We are now ready to state our involutivity theorem:

Theorem 6.1. The transform F satisfies

F2(f) = q2df

for all f ∈ S(X(Fq),C).

Proof. Observe that the space S is generated by functions of the form δx − δλx, where
x = (u, u∨) ∈ X and δx is the indicator function of x ∈ X(Fq). The theorem therefore boils
down to verifying the following identity:

(19)
∑
y∈X

[K(x, y)−K(λx, y)]K(y, z) =


q2d if z = x

−q2d if z = λx

0 otherwise

�
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We will begin by considering the double Fourier transform of the Dirac mass at x:

(20) F2(δx)(z) =
∑

y∈X(Fq)

K(x, y)K(y, z).

As above, let x = (u, u∨), and z = (w,w∨) (where, of course, 〈u, u∨〉 = 〈w,w∨〉 = 0).
Developing the sum on the left hand side of (6) we obtain:

(21) ∑
(v,v∨)∈X(Fq)

∑
t∈F×q

ψ
[
t (〈u, v∨〉+ 〈v, u∨〉) + t−1

] ·
∑
s∈F×q

ψ
[
s (〈v, w∨〉+ 〈w, v∨〉) + s−1

]
or, swapping the order of the summation:∑

t,s∈F×q

∑
(v,v∨)∈X(Fq)

ψ [t (〈u, v∨〉+ 〈v, u∨〉)] · ψ(t−1) · ψ [s (〈v, w∨〉+ 〈w, v∨〉)] · ψ(s−1).

Now we recall that X(Fq) is invariant under scaling: thus we may apply the substitu-
tion18 (v, v∨) 7→ (t−1s−1v, t−1s−1v∨) for each t, s ∈ F×q . Then we obtain:∑

t,s∈F×q

∑
(v,v∨)∈X(Fq)

ψ
[
s−1 (〈u, v∨〉+ 〈v, u∨〉)

]
· ψ(t−1) · ψ

[
t−1 (〈v, w∨〉+ 〈w, v∨〉)

]
· ψ(s−1)

which we may rewrite as:∑
t,s∈F×q

∑
(v,v∨)∈X(Fq)

ψ
[
s−1 (〈u, v∨〉+ 〈v, u∨〉+ 1)

]
· ψ
[
t−1 (〈v, w∨〉+ 〈w, v∨〉+ 1)

]
.

Now we may sum with respect to t and s separately. We recall that
∑

t∈F×q ψ(t−1a) is

either −1 if a 6= 0 or q−1 if a = 0. So let us define a constructible function cx,z : X(Fq)→ C
as follows:

cx,z(v, v
∨) =


1 if 〈u, v∨〉+ 〈v, u∨〉 6= −1 and 〈v, w∨〉+ 〈w, v∨〉 6= −1

−(q − 1) if only one of 〈u, v∨〉+ 〈v, u∨〉 or 〈v, w∨〉+ 〈w, v∨〉 equals − 1

(q − 1)2 if 〈u, v∨〉+ 〈v, u∨〉 = −1 and 〈v, w∨〉+ 〈w, v∨〉 = −1.

Then we see that

F2(δx)(z) =
∑

y∈X(Fq)

cx,z(y).

18Applying a substitution that eliminates the intractable Kloosterman sum terms when, as in our situation,
we have a product of two such Kloosterman sums, bears a striking resemblance to the squaring (followed by
polar substitution) technique used to resolve the Gaussian integral.
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Geometrically we see that the two constraints 〈u, v∨〉 + 〈v, u∨〉 = −1 and 〈v, w∨〉 +
〈w, v∨〉 = −1 correspond to affine hyperplanes in V × V ∗, while X is a quadric hyperplane
in V × V ∗. We are thus weighting the points of X(Fq) by 1, −(q− 1), or (q− 1)2 depending
on whether the point lies in zero, one, or two of these affine hyperplanes.

Let us call the varieties – affine hyperplanes – cut out by 〈u, v∨〉 + 〈v, u∨〉 = −1
and 〈v, w∨〉 + 〈w, v∨〉 = −1 by Π1 and Π2. Observe that replacing x with λx results in
〈λu, v∨〉 + 〈v, λu∨〉 = −1; or, equivalently 〈u, v∨〉 + v, λu∨〉 = −λ−1. This is a parallel

translation of Π1; let us call it Π+λ−1

1 . the content of (19) is that the number of Fq-points in

Π1(Fq)∩Π2(Fq)∩X(Fq) is equal to Π+λ−1

1 (Fq)∩Π2(Fq)∩X(Fq) unless Π1 = Π2. (If Π1 = Π2,

then Π+λ−1

1 is parallel, but not equal, to Π2 – hence the two have empty intersection.)
In any event, we observe that varieties Π1∩Π2∩X are quadric hypersurfaces in affine

space, so we may apply elementary means to count points. We find that:

(22)

∑
y∈X(Fq)

cx,z(y) =



q2d−1 + qd − qd−1 if x = z = 0

q2d − q2d−1 + qd − qd−1 if x = z, with neither 0

−q2d−1 + qd − qd−1 if x 6= z are proportional with neither 0

qd − qd−1 if either one and only of x, z = 0; or else if

x and z are not proportional and 〈u,w∨〉+ 〈w, u∨〉 = 0

−qd−1 if x and z are not proportional and 〈u,w∨〉+ 〈w, u∨〉 6= 0.

Observe the pleasant fact that, excepting the ultra-singular point x = z = 0, subtracting
from a row the row below it yields a single power of q (with sign). Moreover, these strata
have been ordered so that each stratum in X(Fq) lies in the closure of the strata beneath it.
For λ ∈ F×q , each stratum is invariant under the action of (x, z) 7→ (λx, z), except for the
x = z, (x, z) 6= (0, 0) stratum. If x = z, then (λx, z) (for λ 6= 1) lies in the stratum where
x 6= z, neither are 0, and x and z are proportional. We conclude that

F2(δx − δλx) = q2d(δx − δλx),

as claimed.

7. The Case of SL3

Up to isomorphism, we see that there are two kinds of nontrivial parabolic in G: the
Borel (i.e., the 1+1+1-block parabolic), and the 2+1 block parabolic. The latter is the
mirabolic; thus we have already covered this case.

7.1. The Space SL3/U . We will ow describe the paraspherical space G/U(B), for B the

standard Borel. As with all Borels, this is the same as the BK-space G/[B,B]. As we shall

see, this case is the smallest-rank example for which G/U which is singular.
Observe that, like in the case of SL2, we have a map

G/U(B) −→ A3
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d e f
g h i

 7→
ad
g

 .

However, a simple dimension count shows that G/U has dimension 8 − 3 = 5, so this map
cannot be an isomorphism onto its image.

Observe that, were we to take the left quotient by U(B), we would have another map:

(23) U(B)\G −→ A3a b c
d e f
g h i

 7→ (
g h i

)
.

Now we can define a map G/U(B)→ A3 given by inversion: gU 7→ Ug−1 ∈ U(B)\G. Thus
we may postcompose inversion with the map (23) to give us:

(24) G/U(B) −→ A3a b c
d e f
g h i

 7→ (
dh− ge gb− ah ae− db

)
.

In other words, we have two invariants for G/U(B): the first column of g and the third row
of g−1 (otherwise known as the minors of the third column, or the cross-product of the first
two columns; recall that det(g) = 1, which is why there are no denominators). Notice that
the canonical pairing of these row-and-column vectors is always 0 (as the product would be
the (3, 1) entry of g−1g = Id).

Thus, if we let V = A3 and V ∗ = A3, viewed as the dual vector space, we may define
the map φ:

G/U(B)
φ−→ V × V ∗a b c

d e f
g h i

 7→
ad

g

 ,
(
dh− ge gb− ah ae− db

)
,

whose image is contained in the closed subset {(v, v∨) ∈ V × V ∗ : 〈v, v∨〉 = 0}, and consists
of those pairs, subject to this constraint, such that neither v∗ nor v is 0. Let

(25) X := {(v, v∨) ∈ V × V ∗ : 〈v, v∨〉 = 0}

and

X∗ := {(v, v∨) ∈ X : v 6= 0 and v∨ 6= 0}.
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Note that X has dimension 6−1 = 5, and is affine, while X−X∗ is the union of two 3 copies
of A3, glued at the origin. Hence the complement of X∗ in X is of codimension 2; thus, by
Hartog’s Lemma, any regular function on X∗ uniquely extends to X. Thus X is the affine
closure of X∗. Moreover, by a dimension count, we see that φ induces an isomorphism

G/U(B)
∼−→ X∗

so that

G/U(B) ∼= X.

Note that the variety X is precisely the variety over which we have the quadric Kloosterman
Fourier transform (for the case d = 3). We will in fact see the Kloosterman Fourier is
precisely the transform we called for by (14). X is a quadric hypersurface in A6, the affine
cone over a quadric hypersurface in P5. It has an isolated, conical singularity at the origin
– since SL2 and the mirabolics of SL3 all have smooth paraspherical spaces, we see that this
is the smallest example of a singular G/U(P ).

7.2. The Slipper Pairing. Next, we consider the Slipper pairing for opposite Borels:

G/U(B)×G/U(Bop)→ T .

It is a well-known fact that the double-unipotent invariant functions of SLn are generated
by the determinants of the i × i square matrices located in the upper left corner of SLn,
i ≤ n− 1 [19; 27].19 In our case, the two invariants ofa b c

d e f
g h i


are a and ae−db. These two functions are algebraically independent; thus the Wang monoid
in this case is:

T ∼= A2 ∼= Spec k[a, ae− bd].

Now, we let Xop = G/U(Bop) = {(v, v∨) ∈ V × V ∗ : 〈v, v∨〉 = 0}, where

G/U(Bop)→ Xop

gU(Bop) 7→ (third column of g, first row of g−1)a b c
d e f
g h i

1 0 0
∗ 1 0
∗ ∗ 1

 7→
cf

i

 ,
(
ei− hf hc− bi bf − ec

) .

The Slipper pairing is given by

19For i = n, this is just the determinant of the whole matrix, which is 1 in the SL case. For GLn this gives
another double unipotent invariant. See Grosshans [19], Lemma 18.7, page 104.
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S : X ×Xop → A2

((v, v), (w,w∨)) 7→ (〈w, v∨〉, 〈v, w∨〉),

since the upper right entry of h−1g is given by (first row of h−1) · (first column of g), while
the determinant of the upper right 2 × 2 is the same as the (3, 3)-entry of g−1h, which
is (third row of g−1) · (third column of h). As we would expect, the pairing on the “G-
diagonal”, in other words, S(gU(B), gU(Bop)), is always (1, 1), the identity of the monoid
A2.

7.3. The Function J. We now examine the function J on the Wang monoid A2. To
accomplish this we must analyze the adjoint representation of M∨ = T∨ on u∨. X∗(T∨) =
X∗(T ) = {(a11 + a2λ2 + a3λ3 : a1 + a2 + a3 = 0}. Recall that SL∨3 = PSL3. We see that
the the adjoint action of T∨ in u∨ has weights λ1 − λ2, λ2 − λ3, λ1 − λ3 (i.e.,, the positive
coroots of SL3. Hence the Kloosterman sheaf (forgetting the Tate twist) on the torus T of
SL3 is given by the pull-push of the Artin-Schreier sheaf along the map:

G3
m

A1 (t1, t2, t3) T

t1 + t2 + t3 diag(t1t3, t2t
−1
1 , t−1

2 t−1
2 )

Tr pλ

Now, recall that our two invariants of T are the upper left corner, and the determinant
of the upper left 2 × 2. Let us call these invariants A and B, respectively. We find that
A(diag(t1t3, t2t

−1
1 t−1

2 t−1
2 )) = t1t3 and B(diag(t1t3, t2t

−1
1 t−1

2 t−1
2 )) = t2t3. Thus we find that

A+B = t3(t1 + t2), and that t1 + t2 + t3 = (A+B)t−1
3 + t3.

Therefore, as a function on T , we may write

pλ!Tr∗(ψ)(A,B) =
∑
t3∈F×q

ψ((A+B)t−1
3 + t3) = Kl(A+B).

for A,B ∈ F×q .
Once more, we may apply the perverse continuation principal to see that J extends to

the function Kl(A+B) on the entire Wang Monoid T = A2.
Therefore the Fourier transform is given by

(26) F(f)(y) =
∑

x∈X(Fq)

f(x)K(x, y)

where K(x, y) = Kl (〈u, v∨〉+ 〈v, u∨〉) (adopting as before, the notation x = (u, u∨) and
y = (v, v∨)).
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Now we examine the notion of a special function for SL3/U . In this case, the set of
coroots whose 1-parameter subgroup in U∨ ⊂ PGL3 = G∨ are simply the set of positive
coroots (under the standard upper-triangular convention). Thus Π∨B is simply equal to the
set of the two standard simple coroots, t 7→ diag(t, t−1, 1) and t 7→ diag(1, t, t−1). Their sum
is thus the coroot α∨B : t 7→ diag(t, 1, t−1). Recall that we must think of this as giving a
right Gm action on SL3/U . We see that is scales the first column of a matrix by t, and,
similarly, it scales the third row of the inverse by t. Thus the action of Gm is given by
scaling (v, v) 7→ (tv, tv∨) for t ∈ F×q and (v, v∨) ∈ X(Fq), and our space our space of special
functions are precisely those that satisfy (17).

We conclude that the Foruier transform for SL3 and opposite Borels is precisely the
Fourier transform (18) for a 3-dimensional space V . Thus the involutivity property follows
from Theorem 6.1.

7.4. Normalized Intertwining Operators for SL3(Fq). We will now discuss how our
Fourier transform for opposite Borels in combination with the standard Braverman-Kazhdan
Fourier transform for adjacent Borels give rise to normalized intertwining operators on
SL3(Fq).

7.4.1. Review of Braverman-Kazhdan’s Normnalized Intertwiners for Borels. We first briefly
review the definition of a normalized inertwining operator. Given a fixed Levi factor M ⊂ G,
we let PM denote the collection of all parabolics P , with Levi quotient isomorphic to M ,
containing M . As always, if Pi ∈ PM , we let Ui = Ru(Pi) denote its unipotent radical. We
would like to find transforms between function spaces

Fji : S(G/Ui,C)→ S(G/Uj,C)

intertwining the natural G×M -actions, such that

Fii = Id and Fkj ◦ Fji = Fki.

For G = SL3 and M = T the standard torus, there are six Borels B containing T
forming a torsor under the Weyl group of SL3 (i.e., the symmetric group S3). If we let B be
the standard (upper triangular) Borel, then we let Bw = nwBn

−1
w , where nw ∈ N(T ) is a lift

of w. We then have a fixed bijection between the W and PT . We write simply Fw′,w for the
intertwiner:

S(G/Uw,C)→ S(G/Uw′ ,C).

Let us recall how Braverman-Kazhdan construct normalized intertwining operators for
Borels in [6]. This is done over local fields; we let k be a local field, and ψ : k → C a fixed
additive character.

The idea, which seems to have originated in the works of Gelfand-Graev (see footnote
2) and Kazhdan [20], is to exploit the geometry of G/B and G/Usα for sα a simple reflection.
In particular, it turns out that G/U and G/Usα are naturally-dual rank-2 vector bundles
(minus their 0-sections) over a common base-space. This linear structure in turn us allows
us to write a transformation FBsα ,B as a classical Fourier transform on each fiber. The
involutivity property then follows straightforwardly from Fourier inversion for A2 of the kind
we have already seen.
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Let B′ = Bs , and U ′ = Usα . Then U ∩ (U ′)op is a single 1-parameter subgroup
associated to the root α; we call20 this uα : Ga → G. We assume G is simply connected, so
that uα and u−α generate a subgroup isomorphic to SL2 in G.

Let Q denote the subgroup of G generated by U and U ′. Note that Q = [Pα, Pα], the
commutator group of the minimal non-Borel parabolic associated to α. Then we notice that:

G/U G/U ′

G/Q

exhibits G/U as a Q/U ' SL2/U ' A2 \ {(0, 0)} fibration over G/Q. Likewise, G/U ′ is a
Q/U ′ ' SL2/Uop ' A2 \ {(0, 0)} fibration over G/Q. (Here U refers to the upper-unipotent
subgroup of SL2, while Uop refers to the lower-unipotent subgroup of SL2; the SL2 here refers
to the the subgroup of Q generated by uα and u−α.) In other words, both G/U and G/U ′

are rank two vector bundles over G/Q, with zero section removed.

Let G̃/U and G̃/U ′ denote the corresponding rank two vector bundles over G/Q;
equivalently, these are the relative affine closures of G/U and G/U ′ over G/Q. There is a
fiberwise duality between these two rank-2 vector bundles; in fact, there is a G-invariant
form

(27) 〈−,−〉 : G̃/U ×G/Q G̃/U ′ → A1

which we call the Braverman-Kazhdan Pairing. (Note that this is not the pair of Slipper’s.)

The BK pairing reduces to the pairing we have already on SL2/U and SL2/Uop in (6). Indeed,
let φ : SL2 → G, where

φ

(
1 x
0 1

)
= uα(x); φ

(
1 0
x 1

)
= u−α(x); φ

(
t 0
0 t−1

)
= α∨(t).

Then we observe that if gU and hU ′ both lie over the same point in G/Q, we have U ′h−1gU
is a well-defined element of φ(u−α)\φ(SL2)/φ(uα). Of course, this last double quotient is
isomorphic (via φ−1) to

Uop\SL2/U ∼= A1

via (5). As in the SL2 case, this pairing is clearlyG-invariant since U ′h−1gU = U ′(g′h)−1(g′g)U .
Now, we define:

C(G̃/U(k),C)
FB,B′−−−→ C(G̃/U ′(k),C)

20We will be a bit cavalier and sometimes refer to uα as a subgroup of G; when being precise, we will mean
a particular map Ga → G.
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as the fiberwise Fourier transform with respect to ψ and the above-defined vector-space
duality. That is to say, we “pull-push” functions along the upper roof of the Cartesian
diagram:

(28)

G̃/U ′ ×G/Q G̃/U

G̃/U ′ G̃/U

G/Q

with respect to the kernel ψ (〈−,−〉).
In formulae, let f ∈ C(G̃/U(k),C). We pull f back to a right U -invariant function on

G, which we, somewhat abusively, also call f . Then, for all g ∈ G, and β, δ ∈ k, we have:

(FBop,B(f))

[
gφ

(
∗ β
∗ δ

)]
=

∫
A2

f

(
gφ

(
α ∗
γ ∗

))
ψ (αδ − βγ) dαdγ,

where ∗ means arbitrary entries such that

(
∗ β
∗ δ

)
,

(
α ∗
γ ∗

)
∈ SL2(k). (The output is

independent of the choice of ∗’s because f is right U(B) ⊃ uα-invariant, and FBop,B(f) is
right U(B′) ⊃ u−α-invariant.)

Once the transform has been established of B and B′ separated by a simple reflection,
the general FB′,B is constructed as a composition of such “simple” Fourier transforms. One
must verify, of course, that the resulting transform FBw,B is independent of the decomposition
of w into simple reflections. For formal reasons related to generators and relations for Coxeter
groups, this reduces to verifying that

(29) Fe,sα ◦ Fsα,e = Fe,e = Id

and

(30) Fw′w,w ◦ Fw,e = Fw′w,e

in the case in which `(w′w) = `(w′) + `(w), where ` is the length function on the Weyl
group. Property (29) is involutivity, which follows from Fourier inversion for A2; (30) follows,
essentially, from Fubini’s theorem.

7.4.2. Finite Field Subtleties. If we attempt to repeat this construction in the context of
finite fields, we quickly bump up against an obstruction. We may perfectly well pull-push
functions on rational points along (28); this will define an involutive Fourier transform Fsα,e.
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But we can proceed no further in composing this transform by another such transform21

Fsαsβ ,sα : applying the transform Fsα,e results in a function on G̃/U ′(Fq), while the domain
of Fsαsβ ,sα consists of the set of functions on a different relative affine closure of G/U ′. Of
course, over local fields, these discrepancies are irrelevant because the difference between

G̃/U and G/U is of measure 0, so we may restrict to functions on G/U everywhere. But, as
we have discussed, Zariski closed subsets of varieties over finite fields have positive measure;
we cannot simply ignore them.

There are two ways we might attempt to circumvent this problem. One, which we
explore in this section, is to restrict our space of functions to those functions f such that

the support of Fsα,e(f) is entirely in G/U ′(Fq) ⊂ G̃/U ′(Fq). Another is to try to extend the

transform to functions on the absolute affine closure G/U (which contains all the different

G̃/U in a canonical way).
For now, let us try to understand the first approach in the case of SL3. We will

consider all of our functions to have domain equal to the full affine closure G/U(Fq). But
we will constrain the functions’ support so that the composition of the “simple” Braverman-
Kazhdan transforms Fwsα,w is always well-defined. We will discover that our “opposite”
Fourier transform (43), when restricted to this function space, does indeed agree with the
corresponding composition of simple Braverman-Kazhdan Fourier transforms.

7.4.3. The Geometry of Braverman-Kazhdan Pairings for SL3. We begin by reproducing
Makisumi’s image the spherical apartment for SL3, as a visual aid. Recall that each facet
corresponds to a different standard parabolic; these parabolics have been superimposed. The
open 60-degree cones (the Weyl chambers) correspond to Borels, and Borels aree adjacent if
the corresponding Weyl chambers share a wall:

21Observe that while B is adjacent to Bsα for a simple reflection sα, it is no longer true that Bsα is adjacent
to Bsβsα for sβ another simple reflection. Rather, we see that we must conjugate sβ by sα to produce simple
reflection with respect to the Borel Bsα . Hence we see that B(sαsβsα)sα = Bsαsβ is the desired adjacent
Borel. Notice that the order of α and β is flipped from what one might naively expect.
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The Spherical Apartment and Coroots for SL3

Now we will examine the Braverman-Kazhdan pairing for adjacent Borels in SL3. Let
B′ be the Borel corresponding to the Weyl chamber containing λ2 − λ3 in the illsutration
above. Let X ′ = G/U(B′). We see that X ′ = {(v∗, v) ∈ V ∗× V : 〈v∗, v〉 = 0}, with the map

G/U(B′)→ X ′

gU(B′) 7→ (row 3 of g−1, column 2 of g)a b c
d e f
g h i

1 0 ∗
∗ 1 ∗
0 0 1

 7→
(dh− ge gb− ah ae− db

)
,

be
h

 .

Now both G/U(B) and G/U(B′) have natural maps to G/[P, P ], where P is the 2+1 par-
abolic (in fact, [P, P ] is the subgroup of G generated by U(B) and U(B′)). Thus there are
maps between the corresponding affine closures; these are given by

X → A3

(v, v∨) 7→ v∨

and

X ′ → A3

(v, v∨) 7→ v∨.

Hence we may consider the varieties
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(31) G/U(B)×G/[P,P ] G/U(B′) = {(v, v∨, w) ∈ V × V ∗ × V : 〈v, v∨〉 = 0 and 〈w, v∨〉 = 0},

and

(32)

G̃/U(B)×G/[P,P ]
˜G/U(B′) = {(v, v∨, w) ∈ V × V ∗ × V : 〈v, v∨〉 = 0, 〈w, v∨〉 = 0, v∨ 6= 0}.

This latter space is a product of two rank-two vector bundles over G/[P, P ], and it possesses
the Braverman-Kazhdan pairing

(33) 〈−,−〉 : G̃/U(B)×G/[P,P ]
˜G/U(B′)→ A1.

Explicitly, this is given as follows. Observe that v ∧ w ∈
∧2(V ) ∼= V ∗. (We make this

isomorphism canonical by insisting that
∧3 V has chosen basis e1 ∧ e2 ∧ e3, giving us a

specified isomorphism
∧3 V ∼= A1. Here the ei are the standard basis vectors of V = A3.)

Since v and w both lie in ker (v∨), we see that v ∧ w = λv∨. Then the map (v, , v∨, w) 7→ λ
defines the map (33). When we identify all the vector spaces as k3 with the standard
dot product representing vector-covector evaluation, we may write the Braverman-Kazhdan
pairing in formulae as:

(v, v∨, w) 7→ v × w
v∨

where × means the classical 3-dimensional cross product. The ratio is meaningful because
v × w and v∨ are, as we have seen, proportional.

Observe that the Braverman-Kazhdan Pairing (33) does not algebraically extend to
(31): the ratio λ cannot be defined if v∨ = 0. This is one reason that extending even

the “adjacent” Braverman-Kazhdan transformation to all functions on G/U(Fq) is not so
straightforward.

7.4.4. Restricted Function Spaces and Composition of Transforms. We want to constrain our
functions f so that we may compose Braverman-Kazhdan transforms.

Firstly: we observe that the Braverman-Kazhdan transform corresponding the the flip
across the Hα1−α2 hyperplane in the spherical apartment, is defined on our model of SL3/U
by:

FBK(f)(v, v∨) =
∑

u∈(v∨)⊥

f(u, v∨)ψ

(
u× v
v∨

)
.

We see that we must have

(34) f(v, 0) = 0
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if the transform is even to be well-defined. (Setting f(v, 0) = 0 allows us to ignore the terms
where we would have a division by 0 problem.) Similarly, if we want to be able to define the
BK Fourier transform corresponding to the flip about Hα2−α3 , we will need to have

(35) f(0, v∨) = 0

for all v∨. Observe that these two constraints mean that f is entirely supported on G/U ⊂
G/U .

Next we demand that FBK(f) vanish on the set {(v, v∨) : v = 0}; we see that:

0 = FBK(f)(0, v∨) =
∑

u∈(v∨)⊥

f(u, v∨)ψ

(
u× 0

v∨

)
=

∑
u∈(v∨)⊥

f(u, v∨).

Hence

(36)
∑

u∈(v∨)⊥

f(u, v∨) = 0

for all v∨. Likewise, considering the Hα2−α3 flip, we see that we want

(37)
∑
v∨∈u⊥

f(u, v∨) = 0

for all u.
We find that the most natural constraint, in the spirit of (17) and our notion of

“special” functions (see footnote 13, in particular), is as follows:

S ′(X(Fq),C) =

{
f : ∀ v, v∨ with 〈v, v∨〉 = 0,

∑
λ∈F×q

f(λv, v∨) = 0,(38)

∑
λ∈F×q

f(v, λv∨) = 0, and
∑
λ∈F×q

f(λv, λv∨) = 0

}
.

Observe that this automatically implies (34) and (35). Moreover, we see that these con-
straints also imply (36) and (37). In fact, the constraints impose by S ′ are somewhat stronger
than those given by (34), (35), (36) and (37). It is possible we may be over-constraining
S ′; however, we will eventually use the full force of the constraints on S ′ in comparing com-
positions of BK transforms to the Kloosterman transform. Finally, observe that FBK does
indeed preserve the space S ′. For this all these reasons, we have no obstruction to composing
BK transforms.22

22Following the notion of specialness for a P  P ′ intertwiner, as described in footnote 13, we see that
these three toroidal averaging constraints correspond to exactly to being special for each of the intertwiners
B  B′ we will consider below.
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We now wish to compose several of these BK transforms and compare it with our
Kloosterman transform for opposite Borels. To simplify notation, we will let ci represent
the ith column vector of a matrix g in SL3, and let ri represent the ith row vector of g−1.
We will compose the three flips along the upper 180-degree arc in the spherical apartment
illustrated above, going from the upper-triangular Borel to the lower-triangular. We first
tabulate the invariants for each G/Uw we will encounter en route:

SL3

/1 ∗ ∗
0 1 ∗
0 0 1

 , SL3

/1 0 ∗
∗ 1 ∗
0 0 1

 , SL3

/1 0 0
∗ 1 ∗
∗ 0 1

 , SL3

/1 0 0
∗ 1 0
∗ ∗ 1


c1 c2 c2 c3

r3 r3 r1 r1

Therefore, we may write the composite transform as:

(39) Fcomp(f)(c3, r1) =
∑
c2

c2·r1=0

∑
r3

c2·r3=0

∑
c1

c1·r3=0

f(c1, r3)ψ

(
c1 × c2

r3

)
ψ

(
r3 × r1

c2

)
ψ

(
c2 × c3

r1

)
,

where the vectors over which we are summing are presumed to be nonzero. We want to
compare this with the Kloosterman transformation:

(40) F(f)(c3, r1) :=
∑

(c1,r3)∈X(Fq)

f(c1, r3)K[(c1, r3), (c3, r1)]

where K[(c1, r3), (c3, r1)] := Kl(c1 · r1 + c3 · r3).

Proposition 7.1. For all f ∈ S ′, we have

Fcomp(f) = F(f).

Proof. If we fix c1, r3 (and of course c3 and r1 are fixed to begin with!), we may find the total
coefficient of f(c1, r3) in the sum (39):∑

c2

c2∈r3⊥∩r1⊥

ψ

(
c1 × c2

r3

)
ψ

(
r3 × r1

c2

)
ψ

(
c2 × c3

r1

)
.

If r3 and r1 are not proportional, then c2 lives in the 1-dimensional subspace r1
⊥ ∩ r3

⊥:
in fact, it is precisely the subspace generated by r3 × r1. Let c2 = λ · r3 × r1, and recall
Lagrange’s formula, a× (b× c) = (a · c)b− (a · b)c. We find that c1 × c2 = λ(c1 · r1), since
we assume that c1 · r3 = 0. Likewise, c2 × c3 = λ(c3 · r3). We manifestly have r3×r1

c2
= λ−1,

so we find that the coefficient of f(c1, r3) is:∑
λ∈F×q

ψ([c1 · r1 + c3 · r3]λ+ λ−1) = Kl(c1 · r1 + c3 · r3).
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This is precisely what we want: we see that, “generically”, the transform Fcomp resulting
from the composite of the three BK transforms gives the same kernel as our Kloosterman
Fourier transform. More precisely, if r3 and r1 are independent, then the total coefficient
of f(c1, r3) in the expansion of Fcomp(f) in (39) is exactly K((c1, r3), (c3, r1), the coefficient
in its expansion in (40). Observe that independence of r3 and r1 is an “open” or “generic”
condition.

We have shown that, after amalgamating all the summands with a factor of f(c1, r3) in
(39), we will obtain a sum that “generically” matches (40) term-wise. Now we must examine
the remaining “boundary” terms. We will show that the two “boundary” sums agree (though
only “in totality” – not necessarily term-wise). More precisely, we will show that the sum of
all the terms in (39) and (40) for which r3 and r1 are dependent is, in both cases, 0. This is
where we make critical use of the assumption that f belongs to S ′.

Let us consider the remaining “boundary terms” of the sum (39). In this case, r1 and
r3 are proportional, and c2 lives in the 2-dimensional space r1

⊥ = r3
⊥. Let r3 = µr1. We see

that the sum of such terms is:

∑
c2

c2·r1=0

∑
µ∈F×q

∑
c1

c1·r1=0

f(c1, µr1)ψ

(
c1 × c2

µr1

)
ψ

(
µr1 × r1

c2

)
ψ

(
c2 × c3

r1

)

The second ψ factor disappears because r1 × r1 = 0. And now we may apply the
substitution c1 → µc1, which gives us

∑
c2

c2·r1=0

∑
µ∈F×q

∑
c1

c1·r1=0

f(µc1, µr1)ψ

(
c1 × c2

r1

)
ψ

(
c2 × c3

r1

)

Since the last two factors are independent of µ, we find the whole expression is 0 because
f ∈ S ′. Hence for f ∈ S ′, the total sum of those terms in (39) for which r3 is proportional
to r1 is 0.

Now we examine the total sum of those terms in (40) for which r3 is proportional to
r1. This is:

∑
c1∈r1⊥

∑
r3=µr1

f(c1, r3)K[(c1, r3), (c3, r1)] =
∑
c1∈r1⊥

∑
λ,µ∈F×q

f(c1, µr1)ψ[λ(c1 · r1 + µc3 · r1) + λ−1].

But c3 · r1 = 0 by assumption, whence the above becomes:∑
c1∈r1⊥

∑
µ∈F×q

f(c1, µr1) ·Kl(c1 · r1) = 0,

since f ∈ S ′.
Thus the total sum of those terms in (40) for which r3 is proportional to r1 is 0, and

so agrees with the total sum of such terms in (39). Since we have already matched up the
other terms in the two summations, the proposition follows.

�
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Putting Proposition 7.1 together with the involutivities of FBK and our Kloosterman
F , we may now state the following theorem:

Theorem 7.1. Let G = SL3, T the standard torus. Let BT denote the set of (six) Borels of
G cotaining T . For each Borel B ∈ BT , let (Φ∨)+

B denote the collection of positive coroots
for B. For each coroot α∨, let Tα∨ denote the corresponding 1-dimensional subtorus. Let us
define the space

S ′(SL3/U(B)(Fq),C)

as the collection of C-valued functions on G/U(B)(Fq), whose average under the right action
of Tα∨ is 0 for each α∨ ∈ (Φ∨)+

B. Then the transforms q−1FBK between adjacent Borels gen-
erate a family of normalized intertwining operators.23 Moreover, the intertwiner for opposite
Borels agrees with q−3F , where F is defined as in (14).

Viewing everything as functions on the set X(Fq), for the variety

X = {(v, v∨) ∈ V × V ∗ : 〈v, v∨〉 = 0},

where V = A3, we may say that there exists a G-equivariant action of S3 = WT (SL3) on
the space S ′(X(Fq),C) as defined in (38). This action is G-equivariant, and T -equivariant
where the right T -action twisted by W . It is generated by the two transformations:

(41) Fα1−α2(f)(v, v∨) = q−1
∑

u∈(v∨)⊥

f(u, v∨)ψ

(
u× v
v∨

)

and

(42) Fα2−α3(f)(v, v∨) = q−1
∑
u∨∈v⊥

f(v, u∨)ψ

(
u∨ × v∨

v

)

while the longest element of W acts via the quadratic Kloosterman Fourier transform:

(43) Fw0(f)(v, v∨) = q−3
∑

(u,u∨)∈X(Fq)

f(u, u∨)K[(u, u∨), (v, v∨)]

where K(x, y) = Kl (〈u, v∨〉+ 〈v, u∨〉).

8. The case of Sp4

In this section, we let G = Sp4.

23The factor of q−1 is to make the transform truly involutive.
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8.1. Conventions. We will adopt the convention in Makisumi:

Sp4 =

g ∈ GL4 : gT


1

−1
1

−1

 g =


1

−1
1

−1


 .

This slightly unusual convention is superior to the usual

(
0 Id2

−Id2 0

)
insofar as it permits

us to let the standard Borel be given by upper triangular matrices. The maximal torus is
given by matrices of the form:


t1

t2
t−1
2

t−1
1



The projections α1 and α2 : T → Gm give us a system of fundamental weights for Sp4; the
set of roots is:

Φ = {±2α1, ±2α2, ±α1 ± α2}

while the set of coroots is given by:

Φ∨ = {±λ1, ±λ2, ±λ1 ± λ2}.

Further details may be found in Makisumi.
We will, throughout this section, let ω denote the symplectic form preserved by the

action of Sp4:

ω



a
b
c
d

 ,


a′

b′

c′

d′


 = ad′ − bc′ + cb′ − da′

8.2. The Spherical Apartment. We reproduce Makisumi’s illustration:
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The Spherical Apartment and Coroots for Sp4

We see that there are, up to isomorphism, 3 kinds of nontrivial parabolic subgroups:

1) the Borel:


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 ,

2) the Klingen parabolic:


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗


and

3) the Siegel parabolic:


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 .

We will center our attention on the Siegel Parabolic. Let

P =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗


 ,
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so that

U(P ) =




1 0 ∗ ∗
0 1 ∗ ∗
0 0 1 0
0 0 0 1


 .

Note that in the upper-right 2× 2 matrix is actually three-dimensional, and U(P ) is isomor-
phic to the Abelian group A3: (

∗ ∗
∗ ∗

)
=

(
a b
c −a

)
.

The Levi M , which we shall consider both as a subgroup of Sp4 and as a quotient of P , is
isomorphic to GL2, and is embedded in Sp4 via:{(

m 0
0 m−1

)}
.

8.3. Geometry of the Affine Closure. Now we shall describe the paraspherical space
G/U(P ). We observe there is a map:

Sp4/U(P )→ Mat4,2

[v1, v2, v3, v4]

Id2
∗ ∗
∗ ∗

0 Id2

 7→ [v1, v2].

In the above, the vi denote column vectors. The image of this map is the set of (v1, v2) such
that ω(v1, v2) = 0 (since they come from the first two columns of an element of Sp4), and
such that v1 and v2 are linearly independent. The closure of this image in Mat4,2 drops the
linear independence constraint; we let

X := {(v1, v2) ∈ Mat4,2 : ω(v1, v2) = 0}

denote this closure. Note that X has dimension 7. Since G/U(P ) also has dimension
7 = 10 − 3, we can verify that G/U(P ) → X is an isomorphism onto its image. Moreover,
the complement of the this image (i.e., the complement of the rank-2 locus in X ⊂ Mat4,2)
has dimension 5; codimension 2 in X. Thus, Hartog’s Lemma implies that X is isomorphic
to the affine closure of G/U(P ).

Observe that X is a quadric hypersurface in A8; it is the affine cone over a quadric
hypersurface in P7. Hence it has an isolated conical singularity at the origin.

40



Aaron Slipper

8.4. The Slipper Pairing. We will now consider the Slipper pairing. As we did for
G/U(P ), we provide a model for G/U(P op) via:

Sp4/U(P op)→ Mat4,2

[v1, v2, v3, v4]

 Id2 0
∗ ∗
∗ ∗ Id2

 7→ [v3, v4].

Now, observe that U(P op)× U(P )-invariants of Sp4 are given by:
1 0 0 0
0 1 0 0
∗ ∗ 1 0
∗ ∗ 0 1



a b c d
e f g h
i j k l
m n o p




1 0 ∗ ∗
0 1 ∗ ∗
0 0 1 0
0 0 0 1

 =


a b ∗ ∗
e f ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .

Thus the Wang monoid M of the Siegel parabolic P is given by Mat2
∼= Spec k[a, b, e, f ].

Also, observe that in Sp4:


∗ ∗ c d
∗ ∗ g h
∗ ∗ k l
∗ ∗ o p


−1

=


−p l −h d
o −k g −c
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .

Thus the Slipper pairing is given by:

S : G/U(P )×G/U(P op)→M

(gU(P ), hU(P op)) 7→ Uoph−1gU

((v1, v2), (w1, w2)) 7→
(
−ω(v1, w2) −ω(v2, w2)
ω(v1, w1) ω(v1, w1)

)
=

(
0 −1
1 0

)(
ω(v1, w1) ω(v2, w1)
ω(v1, w2) ω(v2, w2)

)
.

8.5. The Function J. Next we try to compute the function J . The first thing we must do
is diagonalize the adjoint representation of M∨ on u∨. We see that G∨ ∼= SO5, M∨ ∼= GL2,
and the adjoint representation of M on u is Std⊕ det. The corresponding cocharacters are
thus given by λ1, λ2 and λ1 +λ2. We see that the function associated to the hypergeometric
sheaf on T is:
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Ψ

(
t1 0
0 t2

)
=
∑
s1d=t1
s2d=t2

ψ(s1 + s2 + d)

=
∑
d

ψ((t1 + t2)/d+ d)

= Kl(tr(t))

where Kl(a) =
∑

d∈F×q ψ(a/d + d) is the Kloosterman sum. This function is invariant under

WM , and so descends to a function on T rss/W . So we expect that J(m) = Kl(tr(m)) for all
matrices m in the rss locus of GL2.

Indeed, we see that pulling back the Kloosterman local system on A1 to Mat2 via
the trace map provides us with a local system which agrees with the γ-sheaf on the regular
semisimple locus of GL2 ⊆ Mat2. Applying the principle of perverse continuation, we find
that this sheaf is our γ-sheaf (up to dimension shift and Tate twist); our function (up to a
power of q) is J(m) = Kl(tr(m)).

Now we calculate which functions are special. Indeed, we see that U(P )∨ has 1-
parameter subgroups in SO5 generated by λ1, λ2, and λ1 + λ2. We see that Π∨P is therefore
{λ1, λ2}, whose sum is α∨P = λ1 + λ2. Thus α∨P (t) = diag(t, t, t−1, t−1) which acts on G on

the right by scaling the first two columns of g by t. Thus it acts on G/U(P ) by scaling

the corresponding element of Mat4,2, and the space of special functions on G/U(P ) is given
exactly as in (17).

Thus the Fourier transforms between opposite Siegel Parabolics of Sp4 is our old qua-
dratic Kloosterman Fourier transform fro Section 6. Involutivity then follows from Theorem
6.1.
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